

Is NIST SRM2806b Responsible for the Sudden Increase in Particle Counts you have Seen on your Oil Analysis Reports?

Alistair Geach, CLS, OMA I, MLA/MLT I, LLA I CINRG Systems Inc., Burlington, ON, CANADA

Bill Quesnel, CLS, OMA II, MLA III, MLT II, LLA I CINRG Systems Inc., Burlington, ON, CANADA

C(i)NRG

Don't just automate, innovate.

CINRG Systems Inc. offers a range of flexible laboratory solutions. Our latest product offerings are a fully automated auto-diluting particle counter and a robotic Houillon viscometer automation system that was developed in partnership with WearCheck International.

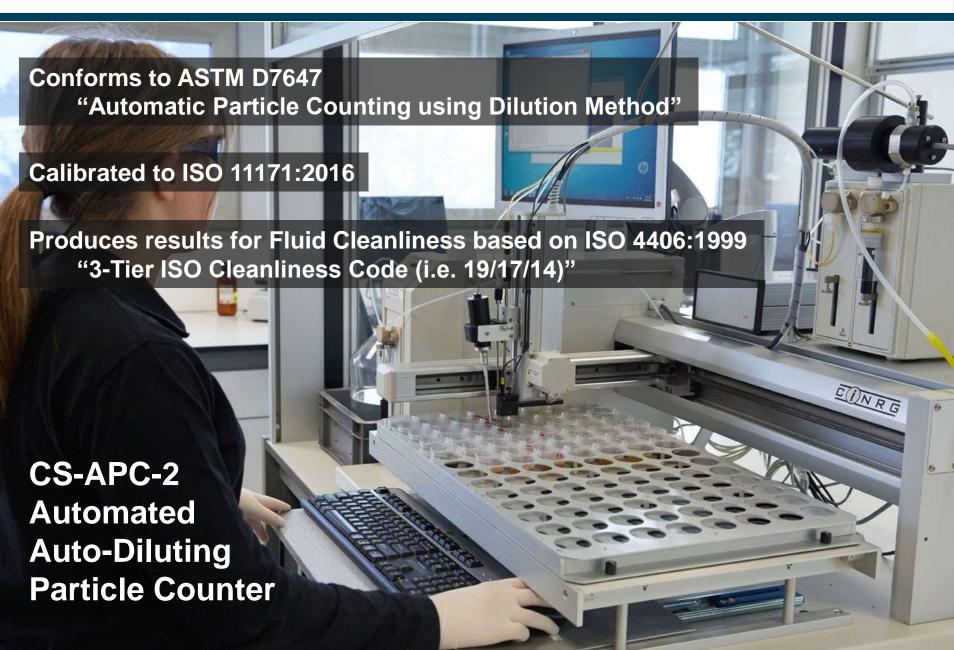
The Authors

Alistair Geach, Operations Manager

Alistair has been in the oil analysis industry for 20 years, formerly with SetPoint Technologies in Africa. Alistair's unique skills in chemistry, physics and engineering have helped him in his career of laboratory automation and instrument development.

STLE CLS, OMA I Certified **ILMA** MLA I, MLT I, LLA 1 Certified

Bill Quesnel, President

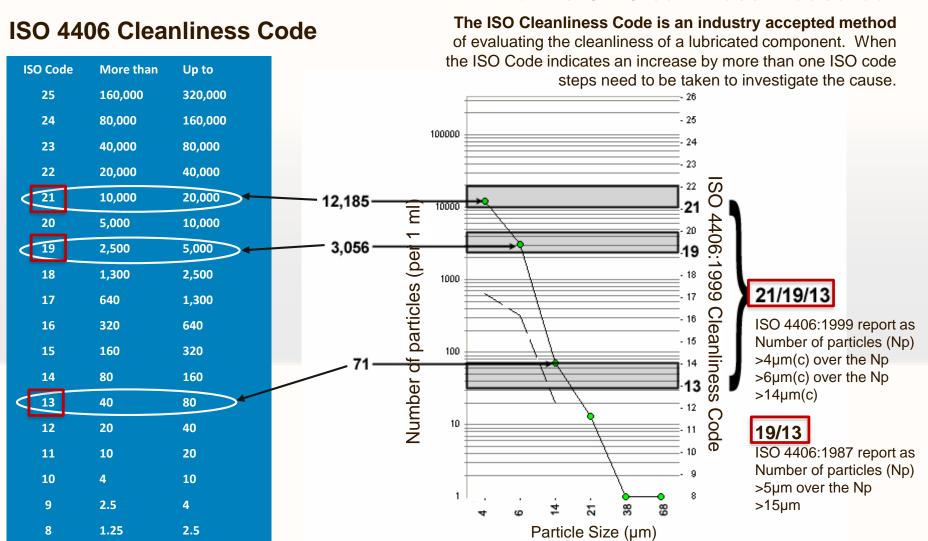

Bill Quesnel has been in the oil analysis industry for 24 years. Bill is president and former laboratory manager for WearCheck in Toronto, Ontario and graduated from the University of Waterloo in pre-med with minors in Biology, Chemistry and Computer Science.

STLE CLS, OMA I, OMA II Certified **ILMA** MLA I/II/III, MLT I/II, LLA 1 Certified

What is our Goal?

Repeatable & Reproducible ISO Cleanliness Codes

Consistent results regardless of technician or laboratory location


What is our Goal?

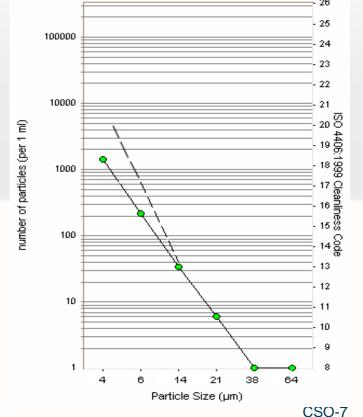
Educate the Oil Analysis Community

Changes to Calibration Fluids for ISO 11171 and the impact on ISO 4406

How is Oil Cleanliness Measured?

Particle Count (PC)

ISO 4406:1999 (ISO 11171)

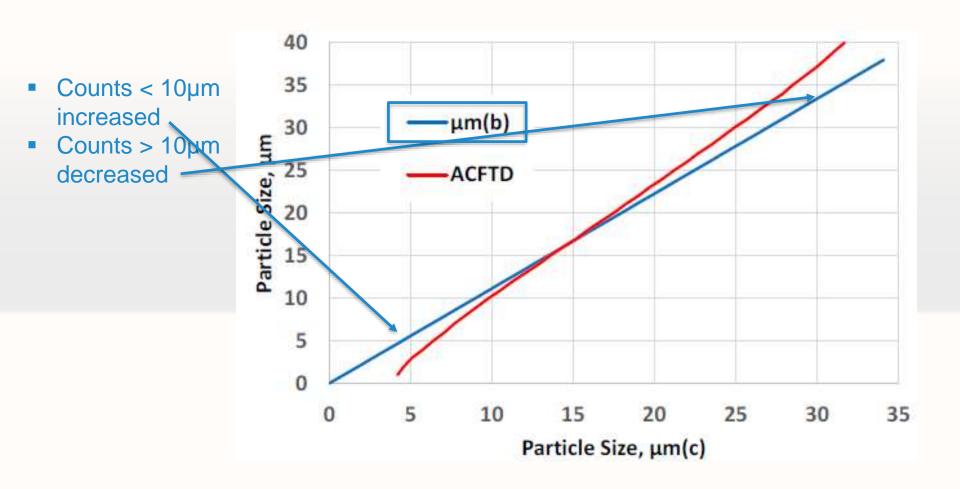

Particle count measurements are taken on typically 10 mL of oil with the results averaged to 1 mL. Prior to counting, the particles in the oil sample must be homogenized which can be accomplished in a combination of ways including shaking, sonication, de-gassing, etc. Most important is that sample preparation be carried out consistently. Once prepared the sample is loaded into a syringe and the contents of the oil are driven through the laser sensor at a controlled flow rate. The sensor "counts" the number of particles at the different size ranges for the duration of the test.

- Verify effectiveness of filtration
- **Detect process contamination**

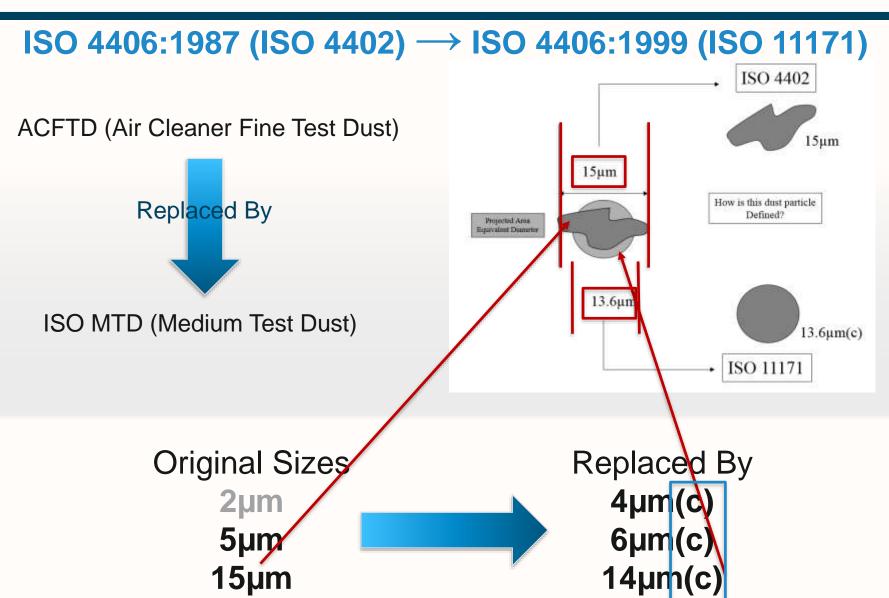
Example

Breather filters and improved oil filtration have brought the cleanliness of this system down from 20/18/16 to 18/15/13 (sample is from a large hydraulic reservoir using Esso Nuto H 68).

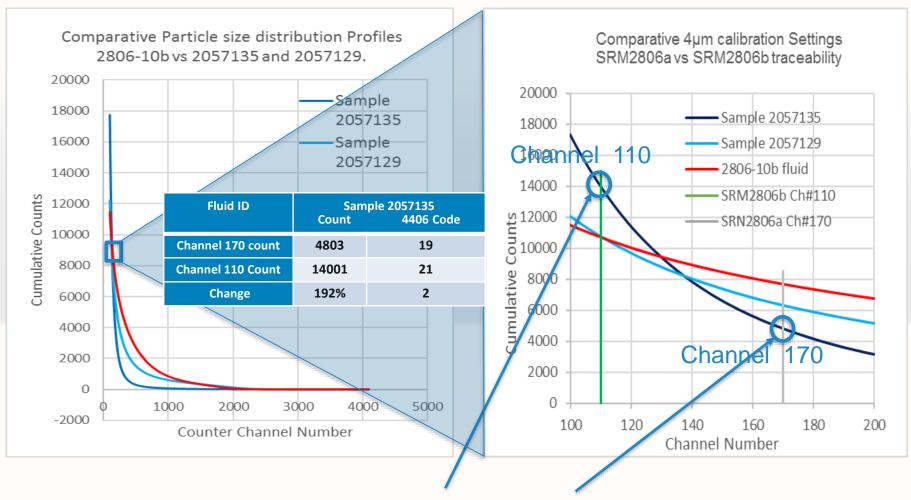
Test	Target	Current	3 months ago	6 months ago	
>4µm	5,000	1,865	3,465	8,432	
>6µm	1,300	254	868	2217	
>14µm	160	46	187	402	
ISO 4406	19/17/14	18/15/13	19/17/15	20/18/16	



APC Calibration Fluid History


Material	ISO Standard	Certificate Date	Reason for Revision	Expiration Date
ACFTD	4402:1991	1960 – 1999	AC Fine Test Dust (ACFTD) no longer commercially available	
ISO MTD SRM2806-0	11171:1999	10-Dec-97	ISO Medium Test Dust (MTD) - NIST Traceable Standard - Original Certificate	
ISO MTD SRM2806-1	11171:1999	1-Mar-99	Revised uncertainties and change of >30µm values to information values	
ISO MTD SRM2806-2	11171:1999	9-Aug-00	Revision of expiration date.	
ISO MTD SRM2806-3	11171:1999	16-Nov-04	Decrease in expiration date due to instability.	17-Sep-04
ISO MTD SRM2806a-0	11171:1999	13-Oct-04	Original Certificate	
ISO MTD SRM2806a-1	11171:1999	29-Jan-07	Update of expiration date and editorial changes.	
ISO MTD SRM2806a-2	11171:1999	16-Dec-08	Extension of certification period.	
ISO MTD SRM2806a-3	11171:2010	30-May-13	Extension of certification period; editorial changes.	31-Dec-14
ISO MTD SRM2806b-0	11171:2016	12-Jun-14	Original Certificate	31-Dec-20

1998 - Effect of ISO MTD replacing ACFTD



APC Calibration Fluid History

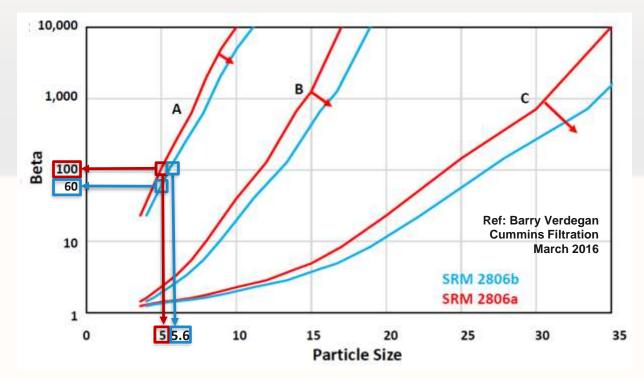
Material	ISO Standard	Certificate Date	Reason for Revision	Expiration Date
ACFTD	4402:1991	1960 – 1999	AC Fine Test Dust (ACFTD) no longer commercially available	
ISO MTD SRM2806-0	11171:1999	10-Dec-97	ISO Medium Test Dust (MTD) - NIST Traceable Standard - Original Certificate	
ISO MTD SRM2806-1	11171:1999	1-Mar-99	Revised uncertainties and change of >30µm values to information values	
ISO MTD SRM2806-2	11171:1999	9-Aug-00	Revision of expiration date.	
ISO MTD SRM2806-3	11171:1999	16-Nov-04	Decrease in expiration date due to instability.	17-Sep-04
ISO MTD SRM2806a-0	11171:1999	13-Oct-04	Original Certificate	
ISO MTD SRM2806a-1	11171:1999	29-Jan-07	Update of expiration date and editorial changes.	
ISO MTD SRM2806a-2	11171:1999	16-Dec-08	Extension of certification period.	
ISO MTD SRM2806a-3	11171:2010	30-May-13	Extension of certification period; editorial changes.	31-Dec-14
ISO MTD SRM2806b-0	11171:2016	12-Jun-14	Original Certificate	31-Dec-20

How will smaller particles be affected (4, 6, 14, 21µm)?

Estimate of Certification "Error"

Relative contribution of increased test dust concentration and certification "error" to the increase in counts.

Particle Size	SRM2806a (3.3mg/l) Certified Counts	SRM2806b (3.5mg/l) Certified Counts	Overall Count Increase	Expected Counts 3.3mg/l x 1.062	Unexpected Increase	Change from "Certification Error"
>4μm	7300.5	10864	49%	7753.1	3110.9	40%
>6µm	2907.9	4210	45%	3088.2	1121.8	36%
>14µm	209.8	389.3	86%	222.8	166.5	75%


NOTE: The "error" is with SRM2806a not with SRM2806b

Affect of new SRM2806b on Filter Beta Ratios

ISO Codes fo	or Various	Dust Size D	istributions	as Determ	ined by Indicat	ed SRM			
	ISO	MTD	ISO UFTD		Multipass Do	Itipass Downstream			
Size, µm(c)	2806a	2806b	2806a	2806b	2806a	2806b			
4	18	19	20	21	12	14			
6	17	18	19	20	9	10			
14	13	14	11	13	3	4			

 SRM2806b will cause a decrease in beta ratios (poorer performance) or an increase in the beta micron size.

Comparative Counts for

Sensor Calibrations traceable to SRM2806a and SRM2806b

Sample Number	2806 Cal	Count >4μm	Count >6μm	Count >14μm	Cleanliness Code	Component Sampled
2057337	а	447	156	15	16/14/11	Hydraulic System
2037337	b	702	226	25	17/15/12	Trydradiic System
2057341	а	321	121	12	16/14/11	Hydraulic System
2037341	b	496	170	20	16/15/12	Trydradiic System
2057382	a	384	114	12	16/14/11	Wind Turbine Gearbox
2037362	b	698	171	18	17/15/11	Willia Tarbille Gearbox
2057613	а	618	179	19	16/15/11	Gas Turbine
2037013	b	1085	277	32	17/15/12	Gas Turbline
2057380	a	355	86	10	16/14/10	Wind Turbine Gearbox
2037380	b	728	137	15	17/14/11	Willia Tarbille Gearbox
2057353	а	312	138	12	16/14/11	Excavator Hydraulics
2037333	b	1250	230	20	17/15/11	Excavator Frydraulics
2057333	a	648	162	14	17/15/11	Hydraulic System
2037333	b	1186	262	24	17/15/12	Trydradiic System
2057384	а	686	187	16	17/15/11	Wind Turbine Gearbox
2037364	b	1252	294	27	17/15/12	Willia Tarbille Gearbox
2057437	a	1198	166	8	17/15/10	Hydraulic System
2037437	b	3606	325	13	19/16/11	Trydradiic System
2057390	a	1256	218	9	17/15/10	Wind Turbine Gearbox
2037330	b	2475	419	15	18/16/11	Willia Tarbille Gearbox
2057335	a	1548	456	53	18/16/13	Hydraulic System
2037333	b	2752	687	79	19/17/13	Trydradiic Gysterii
2057135	а	4803	375	14	19/16/11	Steam Turbine Bearing
2037133	b	14001	874	26	21/17/12	Otean Turbine bearing
2057129	а	6336	1726	261	20/18/15	Hydraulic System
2037123	b	10783	2734	357	21/19/16	Trydradiic Gysterii
2057440	a	14104	1255	46	21/17/13	Excavator Hydraulics
2037440	b	32024	3018	74	22/19/13	LACAVAIOI FIYUIAUIICS

Increase

0-25%

>25%

>50%

>100%

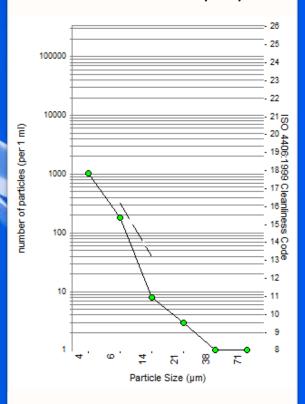
Increase

0 ISO

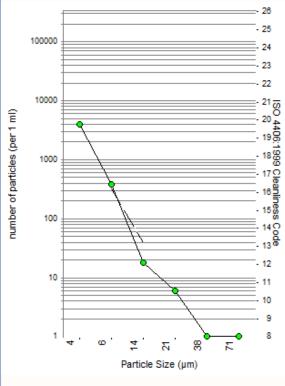
1 ISO 1

1 ISO 2

2 ISO



What is the issue?


- Same Oil Sample
- Results are different because they are based on two different ISO Particle Count calibrations
- SRM2806a vs. SRM2806b

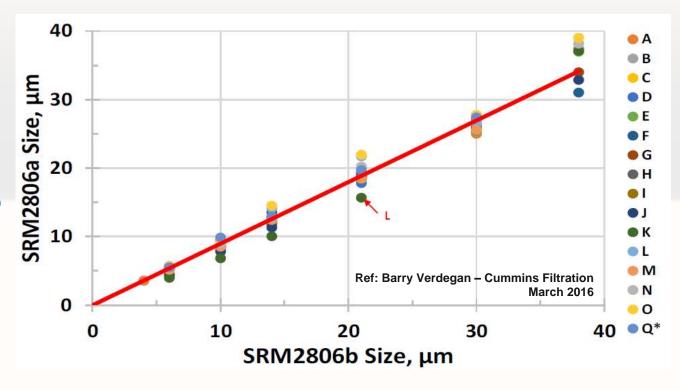
ISO 4406:1999 17/15/10

\$0.00

ISO 4406:1999 19/16/11

2 x tech x 3 hrs + Oil Filter

\$700.00 x 133 = \$93,100.00

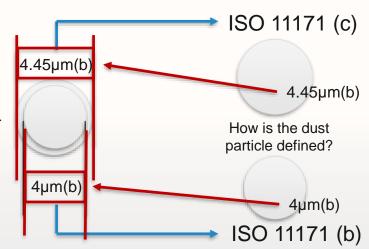

Ref: G. Tapp – GE Wind

Calibration (b) to (c) Conversion Factor

Lab	А	В	С	D	Е	F	G	Н	1	J	K	L	М	N	О	Р	Q	Mean	S
m	0.886	0.875	0.927	0.844	0.891	0.882	0.904	0.873	0.895	0.880	0.880	0.938	0.859	0.948	0.987		0.924	0.898	0.037
R^2	0.978	0.999	0.994	0.998	0.985	0.985	0.996	0.997	0.997	0.997	0.973	0.980	0.998	0.995	0.990		0.994	1.0	0.01

- Round-robin with 15 labs in 4 countries (secondary samples from 7 sources)
- Linear relationship from 0-38µm
- Beyond 38µm can use latex spheres for calibration.

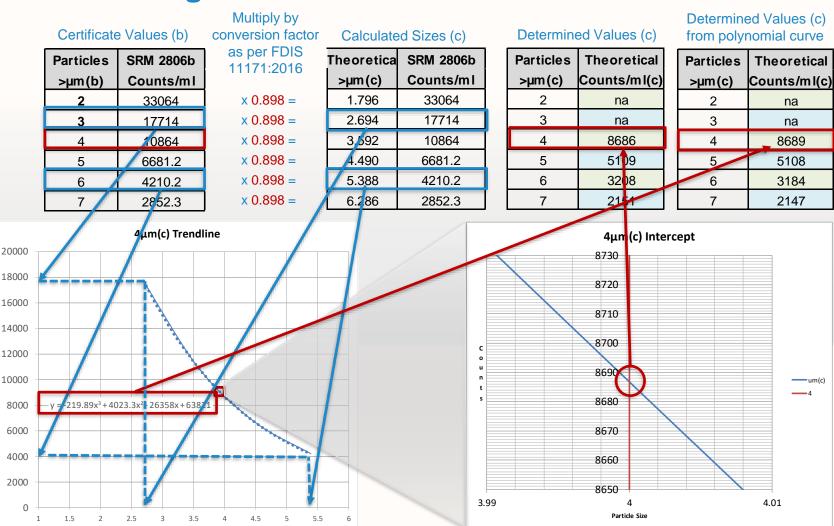
What is the solution?


 $d_{c} = 0.898d_{b}$

Projected Area Equivalent Diameter

- Draft revision to ISO1171
- *Ability to report to SRM2806a:
 4μm(c), 6μm(c), 14μm(c) using
 4.45μm(b), 6.68μm(b), 15.6μm(b)
- Ability to report to SRM2806b:
 4µm(b), 6µm(b), 14µm(b)

NOTE: Relationship determined using round robin results from 15 laboratories using secondary samples from 7 different sources in 4 countries.


- FDIS ballot of 11171 will be out soon.
- ISO TC131/SC6 will meet to vote in next few months.

Calculating SRM2806c Values from SRM2806b Table

Comparative Counts for

Sensor Calibrations traceable to SRM2806a and using FDIS11171(c)

Sample Number	2806 Cal	Count >4µm	Count >6μm	Count >14μm	Cleanliness Code	Component Sampled
2057337	а	447	156	15	16/14/11	Undraulia Cuatam
205/33/	С	503	175	17	16/15/11	Hydraulic System
2057341	a	321	121	12	16/14/11	Lludroulia Cuatam
205/541	С	361	135	14	16/14/11	Hydraulic System
2057382	a	384	114	12	16/14/11	Wind Turbine Gearbox
2037302	С	445	128	14	16/14/11	Willa Fulblille Gealbox
2057613	a	618	179	19	16/15/11	Gas Turbine
203/013	С	719	205	22	17/15/12	Gas fulbille
2057380	a	355	86	10	16/14/10	Wind Turbine Gearbox
2037380	С	428	98	12	16/14/11	Willa Turbline Gearbox
2057353	а	312	138	12	16/14/11	Excavator Hydraulics
2037333	С	737	163	14	17/15/11	Excavator riyuraulics
2057333	a	648	162	14	17/15/11	Hydraulic System
2037333	С	763	187	17	17/15/11	Trydradiic System
2057384	а	686	187	16	17/15/11	Wind Turbine Gearbox
2037304	С	805	214	19	17/15/11	Willd Fulblile Gealbox
2057437	а	1198	166	8	17/15/10	Hydraulic System
2037437	С	1567	200	9	18/15/10	Trydradiic System
2057390	а	1256	218	9	17/15/10	Wind Turbine Gearbox
2037330	С	1518	266	10	18/15/10	Willia Fulbline Gealbox
2057335	а	1548	456	53	18/16/13	Hydraulic System
2037333	С	1802	516	60	18/16/13	Trydradiic Gysterii
2057135	a	4803	375	14	19/16/11	Steam Turbine Bearing
203/133	С	6485	481	17	20/16/11	Steam ruibine bearing
2057129	а	6336	1726	261	20/18/15	Hydraulic System
203/123	С	7338	1981	290	20/18/15	Tydraulic System
2057440	а	14104	1255	46	21/17/13	Excavator Hydraulics
205/440	С	17997	1629	53	21/18/13	Excavator Hydraulics

Increase 0-25%

>25%

>50%

>100%

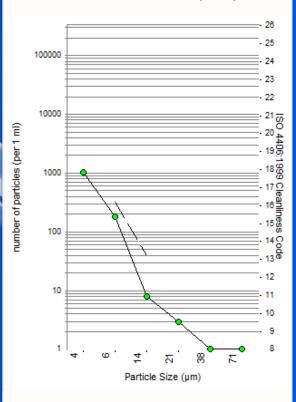
Increase

0 ISO

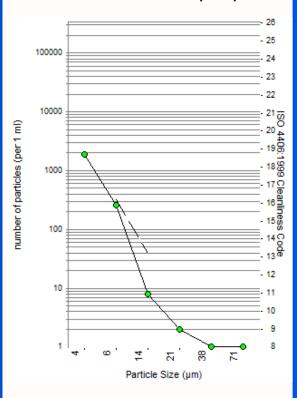
1 ISO 1

1 ISO 2

2 ISO



What is the issue?


- Same Oil Sample
- Results are only slightly different because of revisions to ISO 11171
- SRM2806b using size modification to report as 4µm(c),6µm(c),14µm(c)

ISO 4406:1999 17/15/10

\$0.00

ISO 4406:1999 18/15/10

\$0.00

Summary

- 1998 Discontinuation of ACFTD leads to change in calibration method
 ISO 4402 -> ISO 11171
- Due to change in accuracy of certification standards particle sizes are redefined: 2/5/15 -> 4/6/14

- 2016 New ISO MTD SRM2806b, no availability of SRM2806a may lead to a new ISO11171:2016 revision
- Due to further improvement in accuracy we may see particle sizes redefined again (<u>but only for calibration purposes</u>).
- Ability to report to either standard;
 4µm(c), 6µm(c) 14µm(c)
 or
 4µm(b), 6µm(b) 14µm(b)
- No change to larger particle calibration. Still using PSL fluid.
- If you want to get involved contact your national representative to ISO TC131/SC6. Advise them of your concerns and support the FDIS.

ISO 11171 Calibration Procedure – An Overview

Factory Calibration

- Annex A: Preliminary checks Determine noise level by running super clean fluid (SCF) until < 1 count/sec. Determine volume accuracy by measuring series of 20ml samples and comparing counts.
- Annex B: Coincidence error Start with theoretical limit of sensor and make up samples 10%, 20%, 30% & 40% of this limit. Plot the linear regression curve of the 4µm. Make up 50% 150% samples of limit. Plot these values against linear regression and 95% confidence line. Coincidence error is where this curve crosses the regression lines.
- Annex C: Flow rate limit determination Determine the upper and lower limit of flow rate where
 there is <3% deviation from the results.
- Annex D: Resolution Set-up 4 channels 1.5x noise level, best 10µm guess, 0.72 & 1.32 x guess. Use this moving window method until determine center of 10µm peak. Set up additional 0.9 and 1.1 x 10µm peak and adjust until < 15% variation from count, < 5% between 0.9 and 1.1. For multi-channel (i.e. 4,096) much easier to perform.
- Annex E: Verification of particle count accuracy Make up sample of 1mg UFTD/ml.

 Measure 6 sizes between 5 15µm. Values must all fall between results shown in Table A.1. This must be done using (c) counts.
- Section 6: Sizing calibration Use secondary standard (RM2806b). Continue to measure 20ml samples
 to initially determine new channel settings and until there is minimal variability between successive sample runs.

Laboratory Calibration

Section 6 : Sizing calibration

Annex E: Verification of particle count accuracy – Make up sample of 1mg
 UFTD/ml. Measure 6 sizes between 5 – 15μm. Values must all fall between results shown in Table A.1.
 This must be done using (c) counts.

Requires instrument (c) calibration because of Table A1 in ISO 11171:2016

Table A.1 — Particle size distribution for sensor performance verification (see A.6 and B.4)

Particle size	Particle concentration (particle size for a 1 mg/l sample	es/mL greater than indicat of RM 8632) shall be		
μm(c)	greater than or equal to	less than or equal to		
5	3 300	4 500		
6	1 500	2 500		
7	660	1 400		
8	280	760		
9	120	410		
10	58	220		
11	28	120		
12	14	63		
13	7,4	34		
14	4,1	19		
15	2,3	11		

 Revise ISO 11171 procedure to include an additional UFTD verification table (currently Table A1 for (c) calibration values) for (b) calibration values.

NIST Traceable Primary Calibration Fluid - SRM2806b

National Institute of Standards & Technolom Certificate of Analysis

Standard Reference Material® 2806b

Medium Test Dust (MTD) in Hydraulic Fluid

This Standard Reference Material (SRM) is intended for use in the calibration of instrumental respo test dust suspended in hydraulic fluid. A unit of SRM 2806b consists of two bottles containing irregularly shaped mineral dust isospended in approximately 400 mL of hydraulic fluid each.

Certified Values: Certification of this SRM is in terms of the projected area particle diameters of the particles from the hydraulic fluid. The diameters are made traceable to the NIST Line Scale Interthrough a NIST calibration of a Geller MRS-4XY pitch standard. The certified diameters are con numeric concentration of particles greater than each diameter, referred to as cumulative numb distribution. The mean cumulative particle concentrations versus certified diameter values from I ju given in Table 1 and plotted in Figure 1. A NIST certified value is a value for which NIST confidence in its accuracy, all known or suspected sources of bias have been investigated or taken trit

Information Values: Values given in Table 2 are provided for information only and are not information value is considered to be a value that may be of use to the SRM user, but insufficient available to

performed [1] SRM 2806b (ISO 11171:20 Expiration of

specified, until

June 12, 2014

ISO 11171:2010 (E)

SRM 2806b

in this certific damaged, com Ministerance substantive to

notify the purchaser. Rep

The coordination of the technical measurements culminating in certification of SR54 2806b was led b of the NIST Materials Measurement Science Division.

Design and scanning electron microscopy (SEM) imaging was performed by N.W.M. Ritchis developed the image processing software and provided the image analysis. R.A. Fletcher provide testing, sample selection, preparation and data analysis. The allorementioned staff members are Materials Measurement Science Division.

Statistical consultation including experimental design and uncertainty determination was provided and W.F. Guthrie of the NIST Statistical Engineering Division

Support aspects involved in the issuance of this SRM were coordinated through the NIST Offic Materials.

Materials Measurement S

Gaithenbura, MD 20899 Certificate Issue Date: 12 June 2014

Robert L. Wats Office of Refe

Table 1. Certified Values, Sources of Uncertainty, and Combined and Expanded Uncertainties for Projected-Area Particle Diameter in SRM2806b

Area Particle Diameter ^(a)	Area Particle Concentration (b) (n = 12) Mean Cumulati Concentration Sampli Reproducibility		Standard Uncertainty in Projected Area Particle Diameter Due to Sampling Reproducibility ^(c) (n = 12)	Standard Uncertainty in Projected Area Particle Diameter Due to Image Digitization ^(d)	Combined Standard Uncertainty in Projected Area Particle Diameter (µm)	Coverage Factor, k ^(e)	Expanded Uncertainty, U, in Projected Area Particle Diameter	
(µm)	(particles/mL)	(particles/mL)	(µm)	(µm)	n 4/2-1-1 v	1000	(µm)	
1	80 755	1 318.7	0.012 7	0.219 4	0.2198	1.179 8	0.26	
2	33 064	530.9	0.022 9	0.219 4	0.2210	1.247 6	0.28	
2	17.714	305.2	0.032 2	0.219 3	0.222 2	1.310 3	0.29	
4	10 864	253.5	0.048 4	0.878 3	0.8799	1,176 3	1.0	
\rightarrow	K-RST /	127.6	0.041 0	0.878 8	0.8798	1.164 1	1.0	
6	4 210.2	82.78	0.046 7	0.878 1	0.879 5	1.1749	1.0	
- /	2.832.3	61.18	0.057 9	0.877 7	0.880 2	1.193 5	1.1	
8	2 007.0	38.64	0.059 0	0.879 2	0.8814	1.193 7	1.1	
9	1 476.4	27.90	0.064 3	0.878 9	0.8819	1.203 1	1.1	
10	1 114.8	18.00	0.059 8	0.878 6	0.8809	1.195 3	1.1	
11	857.22	13.61	0.059 3	1.756 6	1.758 1	1.146 4	2.0	
12	649.63	11.09	0.063 8	1.758 5	1.7599	1.149 0	2.0	
13	500.66	10.12	0.079 7	1.758 7	1.760 5	1.162 2	2.0	
14	389.26	10.74	0.106 7	1.758 5	1.762 6	1.185 3	2,1	
15	299,90	8.79	0.1126	1.758 2	1.761 8	1.190 9	2.1	
16	230.39	7.98	0.134 7	1.759 4	1.765 8	1.207 7	2.1	
17	179.37	6.99	0.163 0	1.761 0	1.770 7	1.230 6	2.2	
18	142,77	6.09	0.189 2	1.758 2	1.770 2	1.254 4	2.2	
19	114.45	5.12	0.210 8	1.758 6	1.7746	1.271 7	2.3	
20	93.177	4.53	0.247 9	1.758 7	1.7796	1.303 4	2.3	
21	77,143	4.14	0.297 2	1.756 9	1.786 7	1.341.4	2,4	
22	65.135	3.53	0.3190	1.759 6	1.792 8	1.358 7	2.4	
23	54.701	3.2	0.355 9	1.758 2	1.799 4	1.387 1	2.5	
24	46.830	2.95	0.409 7	1.759 3	1.8163	1,424 7	2.6	
25	40.307	2.64	0.4373	1.758 2	1.822 8	1.441 4	2.6	
26	34.677	2.39	0.471 6	1.760 2	1.835 5	1.465 2	2.7	
27	30.094	2.17	0.502 0	1.758 7	1.843 5	1.487 5	2.7	
28	26.006	1.98	0.521 6	1.758 7	1.848 0	1.497 8	2.8	
29	22,490	1.79	0.575 5	1.757 9	1.866 9	1.533 2	2.9	
30	19.698	1.64	0.640 1	1.758 3	1.895 7	1.568 6	3.0	

⁽²⁾ Stable particle projected area diameter [6].

SRM 2806b

Page 3 of 6

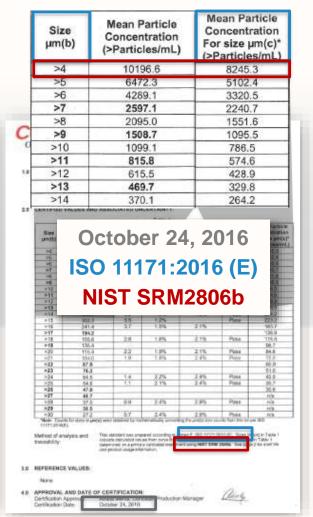
SRM 2806b

Page 1 of 6

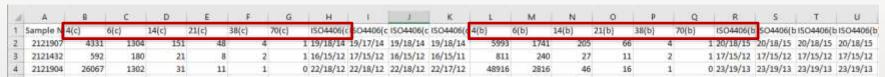
⁽b) Number of particles per milliliter of hydraulic fluid greater than the indicated diameter (number per milliliter).

⁽c) Type A uncertainties evaluated by statistical methods. The standard uncertainty in column 3 is the standard deviation in the cumulative particle concentration divided by the square root of 12 (n=12).

⁽d) Type B uncertainties evaluated by other means, (e) k value determined by Monte Carlo calculation,


The expanded uncertainty for the projected area particle diameter corresponds to a 95 % confidence interval.

Secondary Calibration Fluid - RM2806a & RM2806b



• Section 6: Sizing calibration – Use secondary standard (RM2806b). Continue to measure 20ml samples to initially determine new channel settings and until there is minimal variability between successive sample runs.

All commercial laboratories need to determine to what standard their current calibration fluid(s) comply. Will need to make an informed decision of how to proceed with future particle counter calibrations.

Partial sample of CINRG CS-APC-2 output file.

- SRM2806b and RM2806b calibration certificates have the (b) calibration data and the calculated (c) values.
- Confirm that the calibration kit your are using for re-calibration meets the new ISO 11171:2016 specification and is NIST traceable to SRM2806b.
- Laboratories need to understand the difference between a (b) vs. (c) calibration and must decide whether to continue to report using the (c) calibration or to change to the (b) calibration.

Comparative Counts for Calibrations using SRM 2806b Fluid and ISO 11171:2016 calibrated to both (b) and (c) method

Sample Number	Method	Count >4μm	Count >6μm	Count >14μm	Count >21μm	Count >38μm	Count >70μm	Cleanliness Code	Component Sampled	Increase
2121907	(b)	5993	1741	205	48	4	1	20/18/15	Industrial Bearing	
2121307	(c)	4331	1304	151	66	4	1	19/17/14	industrial bearing	0-25%
2121432	(b)	811	240	27	11	2	1	17/15/12	Wind Turbine	
	(c)	592	180	21	8	2	1	17/15/12	Gearbox	>25%
2121904	(b)	48916	2816	46	16	1	0	23/19/13	Industrial Bearing	72370
	(c)	26067	1302	31	11	1	0	22/18/12	ŭ	> F O 0 /
2120176	(b)	358	98	13	6	1	1	16/14/11	Wind Turbine	>50%
	(c)	251	75	10	4	1	1	15/13/11	Gearbox	
2119579	(b)	720	159	20	6	1	0	17/15/11	Wind Turbine	>100%
	(c)	478	116	14	5	1	0	16/14/11	Gearbox	
2121910	(b)	727	180	23	8	1	0	17/15/12	Industrial Bearing	
2121310	(c)	498	131	17	7	1	0	16/14/11	madamar bearing	Increase
2119575	(b)	15398	872	33	10	1	1	21/17/12	Wind Turbine Gearbox	morease
2113373	(c)	7475	477	23	8	1	1	20/16/12		0.150
2119370	(b)	81882	17250	421	57	5	4	24/21/16	Marine Gearbox	0 ISO
	(c)	58066	10872	244	35	5	4	23/21/15	Wallio Coalbox	
2120177	(b)	10420	855	46	11	1	0	21/17/13	Wind Turbine	1 ISO 1
	(c)	4058	564	30	8	1	0	19/16/12	Gearbox	
2121430	(b)	84937	7440	47	10	4	3	24/20/13	Wind Turbine	1 ISO 2
	(c)	53491	3443	29	8	4	3	23/19/12	Gearbox	1130 2
2121613	(b)	116369	15859	38	8	5	4	24/21/13	Marine Gearbox	2 150
	(c)	86887	6669	21	7	5	4	24/20/12	Wallio Coalbox	2 ISO
2121906	(b)	1436	274	25	8	1	0	18/15/12	Industrial Bearing	
	(c)	901	194	17	6	1	0	17/15/11	maddini Dodinig	
2121223	(b)	77261	393	18	4	0	0	23/16/12	Diesel Engine	
	(c)	35453	186	11	3	0	0	22/15/11	Diodoi Erigino	
2121225	(b)	149735	51626	25	6	1	1	24/23/12	Diesel Engine	
LILILLI	2121225 (c)	129681	27495	16	4	1	1	24/22/11	Diodoi Eligilio	

Recommendations

- SRM2806b and RM2806b calibration certificates have the (b) calibration data and the calculated (c) values.
- Revise ISO 11171 procedure to include an additional UFTD verification table (currently Table A1 for (c) calibration values) for (b) calibration values.
- Instrument manufacturers use NIST SRM2806b for calibration.
 Laboratories may use NIST SRM2806b or RM2806b secondary standards with the following caveats;
- Confirm that your current particle counting instrument is calibrated to the current ISO 11171:2016 standard using NIST traceable SRM2806b.
- Confirm that the calibration kit your are using for re-calibration meets the new ISO 11171:2016 specification and is NIST traceable to SRM2806b.
- Laboratories need to understand the difference between a (b) vs. (c) calibration and make an informed decision of whether or not to implement the change from (c) to (b).

CINRG Systems Inc.Innovation in Automation

Innovation in Automation
For Commercial Oil Analysis Laboratories